

	Index

	Module Index

	Search Page

QnD package

The qnd module (quick and dirty) provides a frontend for reading and
writing self-describing binary files. Backends exist for HDF5 (via h5py),
netCDF3, and PDB (via pure python code contained in QnD) file formats.
netCDF4 is not specifically supported, but since it’s based on HDF5
such files can be treated as HDF5. Adding backends is not very difficult;
the interface is well-defined and relatively small.

QnD is free and open-source, and hosted on LLNL’s public github [https://github.com/LLNL/qnd/].

This manual describes the design philosophy behind this user interface;
in a nutshell, the idea is to keep things as simple as possible, but
no simpler (as Einstein said). The problem we are setting out to
solve is to store collections of scientific data, which means for the
most part arrays of numbers.

Contents

	User Interface for Binary Files
	Basic Usage

	Recording History

	Groups and lists of variables

	Other attributes

	qnd.adict module

	qnd.frontend module

	qnd.generic module

	qnd.h5f module

	qnd.lazy module

	qnd.ncf module

	qnd.pdbdump module

	qnd.pdbf module

	qnd.pdbparse module

	qnd.utils module

Example

	Example Write HDF5 File

	Example Write PDB Files

	Example Read Files

Indices and tables

	Index

	Module Index

	Search Page

User Interface for Binary Files

In terms of the scipy environment, qnd addresses the storage and
retrieval of numpy ndarrays, excepting arrays with the general python
object data type (dtype.kind ‘O’). In scipy programs, these arrays
may be attributes of objects surrounded by methods and other non-data,
but we assume that the programmer provides some means of initializing
all such objects given just the (numerical) ndarrays at their heart.

The python language provides two kinds of collections which qnd
directly supports: the dict (a collection of named objects) and the
list (a sequence of heterogeneous objects). We presume that a
programmer will provide a way to map a nested tree (no loops) of dicts
and lists with ndarray leaves (and dict keys which are strings) to and
from whatever objects their program requires. The dict and list are
precisely the collections provided by the simple and popular JSON data
interchange format. Thus, in order to use the qnd storage interface,
we are essentially asking the programmer support a portable
organization of the program data.

Note the contrast to the goal of the python pickle module; we
acknowledge that some extra design and maintenance work may be
required to support such a mapping. Often the additional effort pays
off in a simplified overall design.

Basic Usage

The first step is to obtain a file handle, say f, by opening a file.
The open function belongs to the particular backend, called openXXX,
and defined in a backend module XXXf. For example:

from qnd.h5f import openh5
f = openh5('filename.h5', 'r+')

The qnd mode choices are the same for all backends (copied from the
excellent h5py module mode sematics):

	‘r’ opens the file read-only

	‘w’ creates a new file, clobbering any existing file

	‘a’ opens the file read-write, creating it if it did not exist

	‘r+’ opens the file read-write, raising an error if it did not exist

	‘w-’ creates a new file, raising an error if it exists beforehand

These mode flags are not semantically identical to the python open
function: The ‘w-’ is not recognized by open at all, and the
open ‘a’ guarantees that any existing file bytes will not be
modified, while the qnd ‘a’ merely means read-write (but has the same
semantics as ‘a’ in terms of file existence and creation).
Furthermore, qnd files are always readable, even if opened in one of
the ‘w’ modes.

Python syntax has two operators for extracting named members from a
compound object: The dot operator extracts an attribute from an
object, and square brackets extract an item from a dict object (or
other mapping). Qnd file handles support both. The dot syntax
f.var is best when you know the name ‘var’ at the time you write
the expression, while the square bracket syntax f[expression] is
best when the name is the result of an expression or value of a
variable.

The dot operator is overloaded, since it is also used for method
attributes like f.close(). Thus the qnd file handle f really
behaves like a dict for the most part, with its support for the dot
syntax mere sugar to improve code legibility and, at least as
importantly, ease of typing in interactive usage. If there were a
variable named ‘close’ in f (who knows where f came from), you
could always access it as f['close']. However, qnd provides a
quick and dirty option for using the dot operator even in these cases:
it will remove a single trailing underscore, so that f.close_
refers to the variable 'close', not 'close_'. (f.close__
would refer to 'close_'.) This idiom is suggested by the PEP8
python style guide, and you would also need it to escape python
keywords, like f.yield_ to refer to f['yield'].

The bottom line is, you use a qnd file handle f as if it were a
python dict, but you are also free to treat items in f as if they
were attributes of this dict object:

x = f.x # read variable "x" from f, same as f['x']
f.x = expression # declare and write "x" to f
f.update(x=expr1, y=expr2, ...) # declare and write several variables
update also accepts non-keyword dicts and lists of (name, value)
x = f.get('x', xdefault) # same as get from dict
varnames = list(f) # preferred over f.keys(), as for any dict
nvars = len(f)
if name in f: do_something
for name in f: do_something
for name, value in f.items(): do_something

In addition to the dict-like update, get, keys, and items methods,
qnd files also have a number of non-dict methods and behaviors:

f.close()
f.flush() # like close then reopen
with openh5('myfile.h5', 'a') as f:
 write_something(f) # closing f upon exit from with suite
f.auto(0) # turn off (or on) auto-read mode
f.recording(1) # turn on (or off) recording mode
f.goto(time=t) # set to previously recorded record
with f.push():
 do_something(f) # temporarily change auto, recording, goto state

The recording and goto modes are the subject of the next section;
we conclude this section by discussing auto mode. You may have
noticed that f.x or f['x'] immediately read the variable from
the file, giving you no opportunity to query its data type or shape,
which you might well want to do without incurring the overhead of the
actual read, especially if you know it is a very large array. We can
get the names of all stored variables with list(f), but how do we
find out what each one looks like without reading it?

The answer is that a qnd file f can be placed into a mode in which
variable references do not trigger an automatic read operation, by
invoking f.auto(0). You can also request this mode using the
auto=0 keyword when you open the file. (The default is
auto=1.) With autoread mode off, getting an item returns a qnd
leaf object, which is like a mini-file handle you can use to query,
read, or write only that specific variable. It has properties similar
to an ndarray:

f.auto(0)
xhandle = f.x # or f['x']
dtype, shape = xhandle.dtype, xhandle.shape # also size and ndim
xhandle = f(0, 'x') # return handle to x independent of auto mode
x = xhandle[:] # read x if x is not scalar
x = xhandle[()] # read x no matter what
xhandle[()] = expression # write x no matter what
x = xhandle() # shorthand for xhandle[()]
xhandle(expression) # shorthand for xhandle[()] = expression
xpart = xhandle[index_expressions] # read part of x
xhandle[index_expressions] = xpart # write part of x

Notice that xhandle inherits the obscure indexing behavior of
ndarray scalars, for which x[:] raises an error. However,
xhandle provides a non-ndarray operation to compensate – calling a
qnd handle as a function always reads the whole thing, whether or not
it has any dimensions.

Although the qnd leaf handles can be used for partial read and write
operations, if that is all you want to do, you can simply combine the
partial index expressions into a single square bracket:

xpart = f['x', index_expressions]
f['x', index_expressions] = xpart

These work no matter how the autoread mode is set, but there is no
equivalent using the dot syntax: Although f.x[index_expressions]
produces the same final result, it reads all of x before applying
index_expressions to the resulting large ndarray.

(Note that qnd only reads or writes the largest contiguous block of
leading indices specified by index_expressions; it only reduces the
intermediate memory footprint when the leading indices are scalar or
small slices of x.)

Finally, sometimes you need to declare a variable without writing it.
To do this in qnd, make its value a dtype or a (dtype, shape) tuple:

f.x = float # declare x to be a scalar dtype(float), that is f8
f.y = yy.dtype, yy.shape # declare y with type and shape of yy
f.z = bool, yy.shape # declare z to be boolean with same shape as yy

Such a declaration reserves space for the array in the file, but it is
your responsibility to fill it with sensible values with one later
write or several partial writes.

Recording History

Setting an item with f.x = value or f['x'] = value both
declares the variable and writes its value. If you later write it a
second time with f.x = value2, by default this overwrites the
orginal value you wrote. Sometimes, however, you need to record the
history of a variable which is changing as a simulation progresses.
The idea behind recording mode is to make the second assignment store
the new value2 in addition to the original value, so by repeatedly
assigning values to x you can store as many versions of its changing
values as you like.

The HDF5, netCDF, and PDB file formats all support this capability by
allowing the leading dimension of a variable to be “unlimited”. But
in qnd, you can suppress this fictitious leading dimension by using
the recording mode to write such variables, and the goto mode to
read them:

f = openh5('myfile.h5', 'w')
f.x = xa # x is not a record variable.
f.recording(1) # Put f in recoding mode; new variables are recorded.
f.time = t0 # Time is a record variable with t0 for its first record.
f.y = y0 # y is a record variable with y0 for its first value.
f.x = xb # x remains a non-record variable, xb overwrites xa
f.time = t1 # Write a second record of time with value t1.
f.y = y1 # Write a second record of y with value y1.
f.close()

f = openh5('myfile.h5', 'r')
Initially, goto mode is off (None), and reading a record variable...
times = f.time[:] # ...returns a list (not array) of all of its records.
Use goto to set a "current record" index for all record variables:
f.goto(0) # first record
t0 = f.time
y0 = f.y
xb = f.x # non-record variables ignore current record
with f.push(): # current record restored on exit from with suite
 f.goto(-1) # go to last record, record<0 acts like any other index
 yN = f.y
You may use any scalar record variable as a keyword to jump to the
record nearest the specified value of that variable (assuming it is
monotonic):
f.goto(time=1.2) # set to record where f.time nearest 1.2
y12 = f.y
for record in f.gotoit(): # iterate over all records
 # gotoit() causes implicit f.goto(record) before each pass
 do_something(f)
f.goto(None) # Turn off goto mode.
ylist = f.y # list of y arrays at every record

The qnd interface, unlike the existing backend file formats, also supports
the case of record variables whose shape changes from one record to the
next. To use this feature, set the recording mode to 2 instead of to 1:

f.recording(2)
f.x = zeros((nx, ny)) # First x record has shape (nx, ny).
f.x = zeros((nx+5, ny-2)) # Second x record has shape (nx+5, ny-2).
f.goto(None)
xlist = f.x # list of x arrays at every record

This possibility explains why f.recordvar returns a list of values at
every record, rather than an array with an extra leading dimension (as in
the fiction employed for the existing file formats).

Groups and lists of variables

The qnd file handle class is QGroup; specifically it is the “root
group” of the file. But a QGroup may contain subgroups, just as a
python dict may contain other dicts. To define a subgroup, simply
assign a dict instead of an array-like value to an item:

f.g = {} # declare an empty subgroup g
f.g.update(x=expr1, y=expr2) # all the methods of f work with g
g = f.g # g is a QGroup, a subgroup of f
y = g.y # or g['y']
g.auto(0) # initially g inherits autoread and other modes from f
root = g.root() # returns root QGroup, root is f here
if f is f.root(): task_if_f_is_root_group()
f['g/x'] # same as f.g.x
f['/g/x'] # same as f.root().g.x

Although a subgroup initially inherits its autoread, recording, and goto
modes from its parent, thereafter the modes of g are independent of the
modes of f. In a gotoit loop, the record number in the iterator will
be necessary to explicitly keep subgroups synchronized:

g = f.g
for record in f.gotoit():
 g.goto(record)
 do_something(f, g)

Because of the the fact that a QGroup looks like a dict, dict(f)
will read every variable in f. By analogy with the qnd leaf
handles, f() also reads every item in f into a dict, with one
twist: Instead of an ordinary dict, f() results in a dict subclass
called an ADict, which permits access to the dict items as
attributes according to the same rules as for a QGroup. If you want
to convert your own dict objects into Adict objects, you can use
the redict function in the qnd.adict module. That module also
contains a generic mix-in class ItemsAreAttrs which you can use as a
base class for your own mapping classes. (Although be sure you read
the comment in the __getattr__ method before you attempt this, as it
can make your code difficult to debug.)

Note that f() respects the autoread and goto modes. Thus if
auto=0, you nothing will be read from the file and the returned
dict will contain qnd leaf handles (QLeaf objects) rather than
variable values. When auto=1, the dict item corresponding to any
subgroup will be a QGroup object. If you want to recursively read
all subgroups, set auto=2, which causes subgroups to be read
automatically. (Note that since g = f.g produces an ADict in
that case rather than a QGroup, auto=2 can never be inherited.)

In addition to QGroup (a dict with str keys) and QLeaf (an
ndarray), the qnd interface provides a third item type, QList, which
stores a python heterogeneous list. A QList is a way to store a
sequence of objects anonymously, so that you can reference them simply
by a sequence number instead of by a name. If you find yourself
inventing sequences of names like ‘var00’, ‘var01’, var02’, and so on,
to store in a QGroup, you want to use a QList instead:

f.var = list # (the builtin list type) declares empty list var
var = f.var # the QList object, assuming f.goto(None)
var.append(value0) # QList has list-like append and extend methods
var.append(value1)
var.extend([value0, value1, ...])
value1 = var[1] # second item of var, negative index, slices work
var[1] = newvalue1 # overwrite value1
nitems = len(var)
var.auto(0) # QList initially inherits its parent's autoread mode

Although QList has an autoread mode like a QGroup, it does not have
either a recording mode or a goto mode. In fact, a record variable is
implemented as a QList, so the recording and goto modes in the parent
group will influence how the list presents itself:

f.goto(1)
value1 = f.var # In goto mode, f.var means f.var[current_record].

The ability to store aribtrary str-keyed dict and list trees whose
leaves are ndarrays (or None) gives qnd the ability to support pretty
much arbitrary python objects. In particular, anything which can be
reduced to JSON format can be stored.

Other attributes

The HDF5 and netCDF file formats support variable attributes beyond
name, type, and shape. These attribute metadata are generally not
useful outside a very narrow software suite for which they were
designed, but may provide helpful documentation when first opening a
category of file. Therefore, qnd supports variable attributes for
backend formats which support them. In qnd, all attributes belong to
the QGroup of the parent. Thus, QList elements may not have
attributes (which is irrelevant since neither HDF5 nor netCDF has
native support for list objects):

fattrs = f.attrs()
attrs = fattrs.x # or fattrs['x'], attributes of f.x
attrs = fattrs._ # or fattrs[''], attributes of f itself
value = attrs.aname # or attrs['aname'] value of attribute or None
attrs.aname = value # declare and set attribute
attrs.aname = dtype, shape, value # convert value to dtype and shape
anames = list(fattrs.x) # names of attributes of f.x
if aname in fattrs.x: do_something
for aname in fattrs.x: do_something
for aname, avalue in fattrs.x.items(): do_something

Attribute values may not be dict or non-array-like lists. Also, the
attribute names ‘dtype’, ‘shape’, ‘size’, ‘ndim’, and ‘sshape’ will
always return the corresponding properties of the item, even though
they are not stored as variable attributes and are not actually present
in the attrs mapping objects.

	Index

	Module Index

	Search Page

qnd.adict module

An items-as-attributes dict.

	
class qnd.adict.ADict(*args, **kwargs)

	Bases: qnd.adict.ItemsAreAttrs, dict

Subclass of dict permitting access to items as if they were attributes.

For a ADict ad, ad.x is equivalent to ad['x'] for getting,
setting, or deleting items. The exceptions are dict method names,
like keys or items, syntactically illegal names, like class
or yield, and any name beginning with __.

Additionally, as a work around for some of these exceptions, ADict
will remove a single trailing underscore from an attribute name,
so ad.x_ is also equivalent to ad['x'], and you need
ad.x__ to get ad['x_'] (a convention inspired by the
similar PEP8 recommendation for syntatically illegal variable
names). The trailing underscore removal does not apply to names
beginning with __.

The trailing underscore removal convention applies to keywords
passed to the constructor or to the update method as well.

Use subscript syntax when a variable or expression holds an item name;
use attribute syntax when you know the item name at parse time:

ad[variable] = value # value of variable is the item name
ad.fixed = value # 'fixed' is the item name
value = ad.get('fixed', default) # except to avoid KeyError

See also

	redict

	recursively toggle between dict and ADict

	ItemsAreAttrs

	mixin base class to provide this for any class

	
class qnd.adict.ItemsAreAttrs

	Bases: object

Mix-in class for QArray, QGroup, or QList, and also ADict.

	
update(*args, **kwargs)

	Multiple __setitem__ from positional arguments or keywords.

	
qnd.adict.redict(d, cls=None)

	Recursively convert a nested dict to a nested ADict and vice versa.

	Parameters

	
	d (dict or ADict instance) – A dict, possibly nested, to be converted.

	cls (dict or subclass of dict, optional) – The dict-like cls to recursively convert d and any sub-dicts
into. By default, if d is a ADict, cls is dict,
otherwise cls is ADict, so repeated calls to redict toggle
between dict and ADict.

	Returns

	dnew – A copy of d whose class is cls. Any items which are dict
instances are similarly copied to be cls instances. Non-dict
items are not copied unless assignment makes copies.

	Return type

	dict or ADict

	Index

	Module Index

	Search Page

qnd.frontend module

Quick and Dirty, a high level file access wrapper.

The QnD interface looks like this:

f = format_specific_open(filename, mode) # e.g. openh5
var = f.varname # read var
var = f['varname']
var = f.get('varname', default)

f.var = var_value # declare and write var
f['var'] = something
f.var = dtype, shape # declare var without writing
f.update({...vars...}, another_var=value, ...)
f.grpname = {...vars...} # declare a subgroup and some members

if name in f: do_something
varnames = list(f)
for name in f: do_something
for name, var in f.items(): do_something

g = f.grpname
f = g.root() # Use the root method to get the top-level QGroup.
f.close() # important if you have written to f

Generally, a QnD QGroup like f in the example behaves like a dict.
However, you may also reference variables or subgroups as if they were
attributes. Use attributes to access variables when you know the
variable name. In short, use square brackets when the variable name
is the value of an expression. (QnD will remove a single trailing
underscore from any attribute reference, so you can use f.yield_
for f['yield'] or f.items_ for f['items'].) The adict
module has an ADict class and a redict function to produce ordinary
in-memory dict objects with their items accessible as attributes with
the same rules. You can read a whole file (or a whole subgroup) like
this:

ff = f(2)

The optional 2 argument is the auto-read mode flag. By default, the
auto-read mode flag is set to 1, which causes f.varname to read an
array variable and return its value, but to simply return a QGroup
object (like f) if the name refers to a subgroup. When the auto
flag equals 2, any subgroups are read recursively, and their values
become ADict instances. (QnD also supports QList variables, and
auto=2 mode returns those as python list instances.)

The items() method also accepts an optional auto argument to
temporarily change auto-read mode used for the iteration.

You can turn auto-read mode off by setting the auto flag to 0. In
this mode, referencing a variable returns a QLeaf instance without
reading it. This enables you to query a variable without reading it.
You can also do that by retrieving the attributes object:

with f.push(): # Use f as a context manager to temporarily change modes.
 f.auto(0) # Turn off auto-read mode.
 v = f.varname
value = v() # Read a QLeaf by calling it...
value = v[:] # ...or by indexing it.
v(value) # Write a QLeaf by calling it with an argument...
v[:] = value # ...or by setting a slice.
v.dtype, v.shape, v.size, v.ndim # properties of the QLeaf v
An alternate method which pays no attention to auto mode:
va = f.attrs.varname # Get attributes of varname.
va.dtype, va.shape, va.size, va.ndim # Built-in pseudo-attributes.
You can use va to get or set real attributes of varname as well:
units = va.units # retrieve units attribute
va.centering = 1 # set centering attribute

When you call a QGroup like f as a function, you may also pass it a
list of variable names to read only that subset of variables. With
auto-read mode turned off, this results in a sort of “casual subgroup”:

g = f(0, 'vname1', 'vname2', ...)
h = f(1, 'vname1', 'vname2', ...)
ff = f(2, 'vname1', 'vname2', ...)

Here, g is an ADict containing QLeaf and QGroup objects, with nothing at
all read from the file, while h is and ADict containing ndarray and QGroup
objects, while ff is an ADict containing ndarray and ADict objects, with
no references at all to f.

If you want to use f as a context manager in the manner of other
python file handles, so that the file is closed when you exit the with
statement, just do it:

with openh5(filename, "a") as f:
 do_something(f)
f has been properly flushed and closed on exit from the with.

QnD also supports old netCDF style UNLIMITED dimensions, and their
equivalents in HDF5. Unlike the netCDF or HDF5 interface, in QnD the
first (slowest varying) dimension of these arrays maps to a python
list, so we regard the entire collected variable as a list of
ndarrays. The netCDF record number is the index into the list, while
any faster varying dimensions are real ndarray dimensions. This
subtle difference in approach is more consistent with the way these
variables are stored, and also generalizes to the fairly common case
that the array dimensions – often mesh dimensions – change from one
record to the next.

To write records using QnD, turn on “recording mode”:

f.recording(1) # 0 for off, 2 for generalized records
f.time = 0.
f.x = x = arange(10)
f.time = 0.5
f.x = x**2

Ordinarily, when you set the value of f.time or f.x, any
previous value will be overwritten. But in recording mode, each time
you write a variable, you create a new record, saving the new value
without overwriting the previous value. If you want all record
variables to have the same number of records, you need to be sure
you write them each the same number of times. One way to do that is
to use the update function rather than setting them one at a time:

record = ADict()
record.time, record.x = 0., arange(10)
f.recording(1)
f.update(record)
record.time, record.x = 0.5, record.x**2
f.update(record)

You cannot change a variable from not having records to having records
(or from recording mode 1 to recording mode 2); the recording mode in
force when a variable was first declared determines if and how all
future write operations behave.

Reading back record variables introduces “goto mode”. Initially, goto
mode is off or None, so that reading a record variable gets the whole
collection of values as a QList, or as an ordinary python list if
auto mode is on:

f.goto(None) # explicitly turn off goto mode
f.auto(2)
times = f.time # python list of f.time values
xs = f.x # python list of f.x arrays
f.auto(0)
time = f.time # QList for the collection of time values
nrecords = len(time)

On the other hand, with goto mode turned on, the fact that time and x
are record variables disappears, so that your view of f.time and
f.x matches what it was when you recorded them. You use the goto
function to set the record:

f.goto(0) # first record is 0, like any python list
t = f.time # == 0.
f.goto(1) # set to second record
t = f.time # == 0.5
x = f.x # == arange(10)**2
f.goto(-1) # final record, negative index works like any python list
You can also pass a keyword to goto, which can be the name of any
scalar record variable, to go to the record nearest that value.
f.goto(time=0.1) # will select record 0 here
current_record = f.goto() # goto() returns current record number

for r in f.gotoit(): do_something # f.goto(r) is set automatically

Note the gotoit() method returns an iterator over all records,
yielding the record number for each pass, and setting the goto record
for each pass automatically. You can use f.push() in a with
statement to temporarily move to a different record.

If you set the recording mode to 2, the record variables need not
have the same shape or same type from one record to the next (indeed,
they can be a subgroup on one record and an array on another). This
cannot be represented as an UNLIMITED array dimension in an HDF5 or
netCDF file, so the QList variable in QnD will become an HDF5 group in
this case, where variable names in the group are _0, _1, _2, and so on
for QList element 0, 1, 2, and so on (plus a hidden element _ which
identifies this group as a list when it is empty). You can create a
QList of this general type without using recording or goto mode at
all:

f.recording(0) # Turn off recording and goto modes.
f.goto(None)
f.varname = list # Make an empty QList
ql = f.varname
ql.append(value0)
ql.extend([value1, value2, ...])
var = ql[1] # retrieves value1
nelements = len(ql) # current number of elements (also works for QGroup)
ql.auto(0) # a QList has auto mode just like a QGroup
for var in ql: do_something # var depends on ql auto mode setting

	
class qnd.frontend.QAttributes(parent, vname=None)

	Bases: qnd.adict.ItemsAreAttrs

Attributes for a QGroup and its members.

Usage:

qa = qgroup.attrs()
qa0 = qa.vname # for variables in this group, or qa['vname']
qa1 = qa._ # or qa[''] for attributes of this group
value = qa0.aname # or qa0['aname'], None if no such attribute
qa0.aname = value # or qa0['aname'] = value
qa0.aname = dtype, shape, value
if 'aname' in qa0: do_something
for aname in qa0: do_something
for aname, value in qa0.items(): do_something

	
class qnd.frontend.QGroup(item=None, state=None, auto=None, recording=None, goto=None)

	Bases: qnd.adict.ItemsAreAttrs

Group of subgroups, lists, and ndarrays.

You reference QGroup items by name, either as qg['name'] like a
dict item, or equivalently as qg.name like an object attribute.
Use [] when the item name is an expression or the contents of
a variable; use . when you know the name of the item. You can
use [] or . to both get and set items in the QGroup. To
read the entire group into a ADict, call it like a function, qg();
you may supply a list of names to read only a subset of items.
A QGroup acts like a dict in many ways:

if 'name' in qg: do_something
for name in qg: do_something
item_names = list(qg) # qg.keys() exists but is never necessary
for name, item in qg.items(): do_something
qg.update({name0: val0, ...}, [(name1, val1), ...], name2=val2, ...)
value = qg.get('name', default)

A QGroup has several possible states or modes:

	Recording mode, turned on by qg.recording(1) and off by
qg.recording(0), affects what happens when you set group items.
With recording mode off, setting an item to an array creates the
item as an array if its name has not been used, or otherwise writes
its new value, requiring it be compatible with the dtype and shape
of the previous declaration. With recording mode on, setting an
item for the first time creates a QList and sets its first element
to the given value, and subsequently setting that item appends the
given value to the existing QList. There is also a recording mode
qg.recording(2) in which subsequent values need not match the
dtype or shape of the first item. You may not switch recording
modes for a given item; the mode in effect when an item is first
created governs the behavior of that item.

	Goto mode, in which you set a current record with qg.goto(rec).
Any item you retrieve or query which is a QList retrieves or queries
the element with 0-origin index rec instead of the whole QList.
You turn off goto mode with qg.goto(None). There is also a
qg.gotoit() function which returns an iterator over all the
records (generally the longest QList in qg).

	Auto mode, turned on by qg.auto(1) and off by qg.auto(0),
in which getting any item reads and returns its value, rather than
a QLeaf object. There is also a qg.auto(2) mode in which
the auto-read feature applies to any QGroup or QList (if goto mode
is off) items recursively.

A QGroup has push and drop methods which can be used to save and
restore all its modes. The drop method is called implicitly upon
exit from a with statement, so you can use the QGroup as a context
manager:

with openh5('myfile.h5', 'a') as qg:
 do_something(qg)
 with qg.push():
 qg.goto(rec)
 do_something_else(qg)
 # qg restored to goto mode state before with.
 do_even_more(qg)
qg flushed and closed upon exit from with clause that has no
no corresponding push

	
islist

	

	
isleaf

	Always 0.

	
isgroup

	Always 1.

	
dtype

	Always dict, the builtin python type.

	
shape

	

	
ndim

	

	
size

	

	
sshape

	Always None.

	
attrs()

	Return attribute tree for variables in this group.

	
auto(recurse)

	Set the auto-read mode for this QGroup.

In auto-read mode, getting an item returns its value, rather than a
QLeaf. If the item is a QGroup or QList, that is returned if
the recurse value is 1, whereas if recurse is 2, the QGroup
or QList variables will be read recursively. Setting recurse to
0 turns off auto-read mode entirely.

Note that you can temporarily set auto mode using a with clause.

	
close()

	Close associated file.

	
drop(nlevels=None, close=False)

	Restore previous recording, goto, and auto mode settings.

Default drop() drops one pushed state, drop(n) drops n,
drop('all') drops all pushed states. By default, drop is
a no-op if no pushed states to drop, drop(close=1) closes
the file if no pushed states to drop, which is called implicitly
on exit from a with suite.

	
dtype

	alias of builtins.dict

	
flush()

	Flush associated file.

	
get(key, default=None)

	like dict.get method

	
goto(record=<object object>, **kwargs)

	Set the current record for this QGroup, or turn off goto mode.

Pass record of None to turn off goto mode, so that QList
variables appear as the whole QList. Setting an integer record
makes any QList variable appear to be the specified single
element. A record value may be negative, with the usual python
interpretation for a negative sequence index. If different QList
variables have different lengths, the current record may be
out of range for some variables but not for others. (Hence using
goto mode may be confusing in such situations.)

Note that you can temporarily set goto mode using a with clause.

This goto method also accepts a keyword argument instead of a
record number. The keyword name must match the name of a
QList variable in this QGroup, whose vaules are scalars. This
will set record to the record where that variable is nearest
the keyword value. Thus, goto(time=t) selects the record
nearest time t.

As a special case, you can get the current record number by calling
goto with neither a record nor a keyword:

current_record = qg.goto()

	
gotoit(name=None)

	Iterate over goto records, yielding current record.

Optional name argument is the name of a goto method keyword,
which may implicitly remove records corresponding to non-monotonic
changes of that variable. If name is a decreasing variable,
the record order will be reversed.

As a side effect, the current record of this QGroup will be set
during each pass. If the loop completes, the original goto state
will be restored, but breaking out of the loop will leave the
goto record set.

	
items(auto=None)

	like dict.items method (iteritems in python2)

	
push()

	Push current recording, goto, and auto mode onto state stack.

	
recording(flag)

	Change recording mode for this QGroup.

With recording mode off, writing to a variable overwrites that
variable. With recording mode on, new variables are declared as
a QList and subsequent write operations append a new element to
this QList instead of overwriting any previously stored values.
In netCDF parlance, variables declared in recording mode are
record variables. Writing to a variable declared when recording
mode was off will always overwrite it; once declared, you cannot
convert a variable to a QList simply by turning on recording mode.

See goto mode for handling record variable read operations.

A flag value of 0 turns off recording mode. A flag of 1 turns
on recording mode, utilizing a trailing UNLIMITED array dimension
in netCDF or HDF5 parlance, which promises that all values written
will have the same dtype and shape. A flag of 2 places no
restrictions on the dtype or shape of the QList elements; such
an unrestricted QList resembles an anonymous QGroup.

	
root()

	Return root QGroup for this item.

	
class qnd.frontend.QLeaf(item)

	Bases: object

An ndarray or None stored in a file.

You can read the data by calling the leaf instance ql(), or by
indexing it ql[:], which also provides a means for partial reads.
A QLeaf has dtype, shape, ndim, and size properties with the
same meanings as an ndarray (except None has all these properties
equal None). Additionally, the sshape property may return a symbolic
shape with optional strings in the tuple representing dimension names.

You can write data by calling ql(value), or by setting a slice,
which provides a means for partial writes.

	
isgroup

	

	
islist

	Always 0.

	
isleaf

	Always 1.

	
dtype

	The numpy dtype of this ndarray, or None if this leaf is None.
This is the dtype in memory, not necessarily as stored.

	
shape

	

	
ndim

	

	
size

	The numpy ndarray properties, or None if this leaf is None.

	
sshape

	A symbolic shape tuple, like shape except dimension lengths may be
type str instead of int.

	
root()

	Return root QGroup for this item.

	
class qnd.frontend.QList(item=None, auto=0)

	Bases: object

List of subgroups, lists, and ndarrays.

You reference QList elements by index or slice, like ordinary list
elements, including the python convention for negative index values.
To read the entire list, call it like a function, ql(), which is
equivalent to ql[:]. A QList has __iter__, append, and extend:

for element in ql: do_something
ql.append(value)
ql.extend(iterable)

In general, the elements of a QList are unrelated to one another;
it’s like an anonymous QGroup. However, a common use case is to
represent a so-called UNLIMITED dimension in netCDF or HDF5. In
this case, every element will have the same dtype and shape. The
islist method returns 1 for this special restricted case, while
it returns 2 for an unrestricted QList. Whether this makes any
difference depends on the underlying file format. The QGroup
recording and goto methods allow you to access QList items in
the group transparently, as if they were individual elements at
a current record or index.

	
isgroup

	

	
isleaf

	Always 0.

	
islist

	This is 1 if this QList is a record array declared in recording
mode 1, and 2 if it was declared in any other way (including as a
record array in recording mode 2).

	
dtype

	Always list, the builtin python type.

	
shape

	

	
ndim

	

	
size

	

	
sshape

	Always None.

	
append(value)

	append a new element to this QList

	
auto(recurse)

	Set auto read mode, analogous to QGroup.auto method.

	
dtype

	alias of builtins.list

	
extend(iterable)

	append multiple new elements to this QList

	
root()

	Return root QGroup for this item.

	
class qnd.frontend.QState(recording=0, goto=None, auto=0)

	Bases: list

State information for a QGroup.

	
class qnd.frontend.QnDList(parent, empty=None)

	Bases: object

Implmentation of a low level QList type using QGroup.

A backend which has no direct support for QList objects can use
this to produce a pseudo-list, which is a group with member names
_ (None or a single signed or unsigned byte, value never read) and
names _0, _1, _2, etc.

This implementation will handle both UNLIMITED index-style lists
made with recording = 1 (that is group.declare with unlim flag)
and general lists. If UNLIMITED dimensions are supported, pass the
QnDLeaf to this constructor:

item = QnDList(QnDLeaf) # if at least one record exists
item = QnDList(QnDLeaf, 1) # if no records yet exist

Use the fromgroup constructor to check if a QnDGroup is a pseudo-list:

item = QnDList.fromgroup(QnDGroup)

	Index

	Module Index

	Search Page

qnd.generic module

Generic file or file family open.

	
class qnd.generic.MultiFile(pattern, existing, future, mode, **kwargs)

	Bases: object

A binary file or family of binary files.

	
callbacks(flusher, initializer)

	set callback function that flushes file metadata

	
close()

	flush and close the current file

	
current_file()

	Index of current file in family, argument to open method.

	
declared(addr, dtype, nitems)

	declare that array has been declared, maybe update next_address

	
filename(n=None)

	current or n-th existing filename in family

	
flush()

	flush metadata and ordinary file buffers

	
next_address(both=False, newfile=False)

	next unused multi-file address, or None if newfile cannot create

	
open(n)

	open n-th file of family

	
seek(addr)

	seek to multi-file address, opening alternate file if needed

	
split_address(addr)

	return file index, address for a multifile address

	
tell()

	return current multi-file address

	
zero_address(n=None)

	multifile address of first byte in current or n-th file

	
qnd.generic.opener(filename, mode, **kwargs)

	Generic file or file family opener.

	Parameters

	
	filename (str) – Name of file to open. See notes below for family conventions.

	mode (str) – One of ‘r’ (default, read-only), ‘r+’ (read-write, must exist),
‘a’ (read-write, create if does not exist), ‘w’ (create, clobber if
exists), ‘w-’ (create, fail if exists).

	**kwargs – Other keywords. This opener consumes one item from kwargs:

	nextaddr_mode (int) – Affects setting of nextaddr for families opened with ‘a’ or ‘r+’
mode. 0 (default) sets nextaddr to the end of the final existing file,
1 sets nextaddr to 0 (beginning of first file), and 2 sets nextaddr
to the beginning of the next file after all existing files.

	Returns

	
	handle –

A file handle implementing the generic interface, consisting of:

handle.callbacks(flusher, initializer)
addr = handle.next_address() # next unused address
f = handle.seek(addr) # return ordinary file handle at addr
f = handle.open(n) # open nth file, calling initializer(f)
handle.flush() # make file readable, calling flusher(f)
flush() restores next_address to value on entry
handle.close() # flush if necessary, then close

	nexisting (int) – Number of existing paths matching filename.

Notes

The filename may be an iterable, one string per file in order. The
sequence may extend beyond the files which actually exist for ‘r+’, ‘a’,
‘w’, or ‘w-’ modes.

Alternatively filename specifies a family if it contains shell globbing
wildcard characters. Existing matching files are sorted first by length,
then alphabetically (ensuring that ‘file100’ comes after ‘file99’, for
example). If there is only a single wildcard group, it also serves to
define a sequence of future family names beyond those currently existing
for ‘r+’, ‘a’, ‘w’, or ‘w-’ modes. A ‘?’ pattern is treated the same as
a ‘[0-9]’ pattern if all its matches are digits or if the pattern
matches no existing files. Similarly, a ‘*’ acts like the minimum number
of all-digit matches, or three digits if there are no matches.

A single filename may also contain a %d or %0nd print format
directive, which will be converted to the corresponding number of
[0-9] glob patterns.

	Index

	Module Index

	Search Page

qnd.h5f module

QnD wrapper for h5py HDF5 interface.

	
qnd.h5f.openh5(filename, mode='r', auto=1, **kwargs)

	Open HDF5 file using h5py, but wrapped as a QnD QGroup.

	Parameters

	
	filename (str) – Name of file to open. If filename contains %d format directive,
open a family of files (the memb_size keyword controls file size).

	mode (str) – One of ‘r’ (default, read-only), ‘r+’ (read-write, must exist),
‘a’ (read-write, create if does not exist), ‘w’ (create, clobber if
exists), ‘w-’ (create, fail if exists).

	auto (int) – The intial state of auto-read mode. If the QGroup handle returned
by openh5 is f, then f.varname reads an array variable, but not
a subgroup when auto=1, the default. With auto=0, the variable
reference reads neither (permitting later partial reads in the case
of array variables). With auto=2, a variable reference recursively
reads subgroups, bringing a whole tree into memory.

	**kwargs – Other keywords passed to h5py.File constructor. Note that the
driver=’family’ keyword is implicit if filename contains %d.

	Returns

	f – A file handle implementing the QnD interface.

	Return type

	QGroup

	Index

	Module Index

	Search Page

qnd.lazy module

Lazy file type identification and permission filters.

	
qnd.lazy.openb(filename, mode='r', auto=1, **kwargs)

	Open PDB or HDF5 or netCDF or some othe binary file known to QnD.

This imports the required package as necessary. See
qnd.pdbf.openpdb or qnd.h5f.openh5 or some other actual
open function for argument details.

	
qnd.lazy.permfilter(*names)

	Given a glob string or list of filenames, exclude unreadable ones.

	Parameters

	names (str or list of str) – An individual filename or a list of filenames, which may include
globbing characters like ‘*’ or ‘?’.
Accepts any number of such arguments.

	Returns

	
	names (list of str) – The subset of all the specified names for which you have read
permission (and which exist). The list may be empty.

	Globbed results are sorted first by length, then alphabetically,

	so that, for example, name100 follows name99. Note, however, that

	name000 also follows name99.

	Index

	Module Index

	Search Page

qnd.ncf module

QnD netCDF3 interface.

	
qnd.ncf.opennc(filename, mode='r', auto=1, **kwargs)

	Open netCDF-3 file returning a QnD QGroup.

A netCDF-3 file differs from other self-describing binary file formats
because no data addresses can be known until every variable to be
stored is declared. Therefore, when writing a netCDF-3 file, you
must declare every variable before you can begin writing anything.

The qnd API is somewhat at odds with this semantics because it encourages
you to declare and write each variable in a single step. The native
netCDF-3 API forces you to declare everything, then call an enddef
method to complete all variable declarations and permit you to begin
writing data. The qnd.ncf backend uses the first call to the ordinary
qnd flush method to emulate the netCDF-3 enddef mode switch – thus
nothing will be written to the file until the first call to flush.
To minimize the difference between ncf and other qnd backends, if you
do use the usual qnd declare-and-write idiom, the ncf backend will save
the variable value in memory until the first flush call, which will
trigger the actual writing of all such saved values.

Note that closing the file flushes it, so that is also a viable way to
finish a netCDF-3 file. Furthermore, when you overwrite any record
variable in recording mode, ncf will implicitly flush the file,
since no new variables can be declared after that.

Note that you use the standard QnD API, a copy of every variable
you write to the file until you begin the second record will be
kept in memory, which could potentially be a problem. If you wish
to declare all variables before writing anything, so that your
code is aligned with the netCDF API, do something like this:

f = opennc("myfile??.nc", "w") # wildcards expand to 00, 01, 02, ...
declare non-record variables from in-memory arrays
f.nrvar1 = nrvar1.dtype, nrvar1.shape
f.nrvar2 = nrvar2.dtype, nrvar2.shape
declare record variables from in-memory arrays
f.recording(1)
f.rvar1 = rvar1.dtype, rvar1.shape
f.rvar2 = rvar2.dtype, rvar2.shape
flushing the file is equivalent to netCDF ENDDEF mode switch
f.flush()
now write the current values of all the variables
f.nrvar1 = nrvar1
f.nrvar2 = nrvar2
writing the record variables writes their values for first record
f.rvar1 = rvar1
f.rvar2 = rvar2
change values of record variables and write the second record
f.rvar1 = rvar1
f.rvar2 = rvar2
when you've written all records, close the file
f.close()

	Parameters

	
	filename (str) – Name of file to open. See notes below for file family.

	mode (str) – One of ‘r’ (default, read-only), ‘r+’ (read-write, must exist),
‘a’ (read-write, create if does not exist), ‘w’ (create, clobber if
exists), ‘w-’ (create, fail if exists).

	auto (int) – The intial state of auto-read mode. If the QGroup handle returned
by openh5 is f, then f.varname reads an array variable, but not
a subgroup when auto=1, the default. With auto=0, the variable
reference reads neither (permitting later partial reads in the case
of array variables). With auto=2, a variable reference recursively
reads subgroups, bringing a whole tree into memory.

	**kwargs – Other keywords. The maxsize keyword sets the size of files in a
family generated in recording==1 mode; a new file will begin when
the first item in a new record would begin beyond maxsize. The
default maxsize is 128 MiB (134 MB). The v64 keyword, if provided
and true, causes new files to be created using the 64-bit netCDF
format; the default is to create 32-bit files. (But a file family
always uses a single format.)
The nextaddr_mode keyword can be used to indicate whether the next
new record in ‘a’ or ‘r+’ mode should go into a new file. The
default behavior is that it should, which is the pdbf module default;
this is nextaddr_mode true. Use nextaddr_mode=0 to continue filling
the final existing file until maxsize.

	Returns

	f – A file handle implementing the QnD interface.

	Return type

	QGroup

Notes

The filename may be an iterable, one string per file in order. The
sequence may extend beyond the files which actually exist for ‘r+’, ‘a’,
‘w’, or ‘w-’ modes.

Alternatively filename specifies a family if it contains shell globbing
wildcard characters. Existing matching files are sorted first by length,
then alphabetically (ensuring that ‘file100’ comes after ‘file99’, for
example). If there is only a single wildcard group, it also serves to
define a sequence of future family names beyond those currently existing
for ‘r+’, ‘a’, ‘w’, or ‘w-’ modes. A ‘?’ pattern is treated the same as
a ‘[0-9]’ pattern if all its matches are digits or if the pattern
matches no existing files. Similarly, a ‘*’ acts like the minimum number
of all-digit matches, or three digits if there are no matches.

	Index

	Module Index

	Search Page

qnd.pdbdump module

Low level functions to create and write a PDB file.

	Index

	Module Index

	Search Page

qnd.pdbf module

Pure python QnD wrapper for PDB files.

Information on the PDB file format is somewhat hard to come by.
Try the SILO github repo https://github.com/LLNL/Silo
esp. src/pdb/ and src/score/ dirs.
Also the end of the QND file pdbparse.py has a long comment with a detailed description.

Note that yorick-generated PDB files are version II, not version III. Also,
yorick pointers are written (by default) in a yorick-specific format. Since
yorick readability has held back many application codes (the LEOS library
and LLNL rad-hydro codes used for ICF design), most of the dwindling legacy
PDB files are version II. Hence, this implementation focuses on the
version III format, and the version I format is supported only for reading.

Furthermore, this implementation only supports IEEE 754 4 and 8 byte
floating point formats, since those are the only unambiguous floating
point formats supported by numpy. Fortunately, this covers all modern
PDB files likely to show up in practice, so we have no significant
incentive to do the work required to support exotic formats.

	
qnd.pdbf.openpdb(filename, mode='r', auto=1, **kwargs)

	Open PDB file or family, and wrap it in a QnD QGroup.

	Parameters

	
	filename (str) – Name of file to open. See notes below for file family.

	mode (str) – One of ‘r’ (default, read-only), ‘r+’ (read-write, must exist),
‘a’ (read-write, create if does not exist), ‘w’ (create, clobber if
exists), ‘w-’ (create, fail if exists).

	auto (int) – The intial state of auto-read mode. If the QGroup handle returned
by openh5 is f, then f.varname reads an array variable, but not
a subgroup when auto=1, the default. With auto=0, the variable
reference reads neither (permitting later partial reads in the case
of array variables). With auto=2, a variable reference recursively
reads subgroups, bringing a whole tree into memory.

	**kwargs – Other keywords. The maxsize keyword sets the size of files in a
family generated in recording==1 mode; a new file will begin when
the first item in a new record would begin beyond maxsize. The
default maxsize is 128 MiB (134 MB). The order keyword can be ‘>’
or ‘<’ to force the byte order in a new file; by default the byte
order is the native order. File families always have the same order
for every file, so order is ignored if any files exist.

	Returns

	f – A file handle implementing the QnD interface.

	Return type

	QGroup

Notes

The filename may be an iterable, one string per file in order. The
sequence may extend beyond the files which actually exist for ‘r+’, ‘a’,
‘w’, or ‘w-’ modes.

Alternatively filename specifies a family if it contains shell globbing
wildcard characters. Existing matching files are sorted first by length,
then alphabetically (ensuring that ‘file100’ comes after ‘file99’, for
example). If there is only a single wildcard group, it also serves to
define a sequence of future family names beyond those currently existing
for ‘r+’, ‘a’, ‘w’, or ‘w-’ modes. A ‘?’ pattern is treated the same as
a ‘[0-9]’ pattern if all its matches are digits or if the pattern
matches no existing files. Similarly, a ‘*’ acts like the minimum number
of all-digit matches, or three digits if there are no matches.

	Index

	Module Index

	Search Page

qnd.pdbparse module

Pure python PDB file format parsing.

Parse PDB metadata. The PDB file format was designed by Stewart Brown
at Lawrence Livermore National Laboratory in the 1990s.

PDB is widely used at LLNL for restart and post-processing data
produced by large radiation-hydrodynamics simulation codes. The PDB
format can describe and store named arrays of any data type
representable in the C programming language that is derived from one
of the primitive C data types char, short, int, long, float, or double
or pointer to a representable type. The format was extended to handle
primitive integer or floating point numbers of any size, such as long
long or long double or 16 bit floating point data. The format was
also extended to organize the named arrays into groups like HDF5. The
metadata is text with a few embedded ASCII control characters, written
at the end of the file, and intended to be parsed and held in memory
when the file is opened.

	
class qnd.pdbparse.PDBChart(root)

	Bases: object

PDB structure chart contains all information about data types.

	
add_primitive(name, desc)

	desc is (size, order, align) or (size, order, align, fpbits)

	
add_struct(name, members)

	members is OrderedDict, name –> typename, shape

	
find_or_create(dtype)

	Find or create stype –> (stype, align, typename).

	
read_special(f, typename, value)

	Recursively read pointer values.

	
use(dtype)

	Find or create stype –> (stype, align, typename, nopartial).

	
qnd.pdbparse.parser(handle, root, index=0)

	Parse PDB file with the given MultiFile handle and PDBGroup group.

	Index

	Module Index

	Search Page

qnd.utils module

Example Write HDF5 File

This script is an example of writing single values and records to a file in HDF5 format.
It is located at [QND repo]/qnd/examples/example_write_h5.py.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	'''
example_write_h5.py demos how to write single values and multiple records
into an hdf5 file.
It writes to the current directory, so run it from one where you have permission to write.
'''
import numpy as np
from qnd.h5f import openh5

fname = "foo.h5"

with openh5(fname, "w") as f:

 # write a single value:
 f.x = 3

 # turn on recording and write two records:
 f.recording(1)
 f.tm = 0
 f.y = 0.1
 f.z = np.arange(3)

 f.tm = 1
 f.y = 0.2
 f.z = np.arange(3)+1

reopen file to append data:
with openh5(fname, "a") as f:

 # append a single new variable to the file
 f.a = 10

 # write one new record:
 f.recording(1)
 f.tm = 2
 f.y = 0.3
 f.z = np.arange(3)+2

Example Write PDB Files

This script is an example of writing single values and records to a file in PDB format.
It is located at [QND repo]/qnd/examples/example_write_pdb.py.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	'''
example_write_pdb.py demos how to write single values and multiple records
into a family of pdb files.
It writes to the current directory, so run it from one where you have permission to write.
'''
import numpy as np
from qnd.pdbf import openpdb

with openpdb("foo000.pdb", "w") as f:

 # write a single value:
 f.x = 3

 # turn on recording and write two records:
 f.recording(1)
 f.tm = 0
 f.y = 0.1
 f.z = np.arange(3)

 f.tm = 1
 f.y = 0.2
 f.z = np.arange(3)+1

append a single new variable to the file:
with openpdb("foo000.pdb", "a") as f:
 f.a = 10

open a new file in the family and write one new record:
with openpdb("foo001.pdb", "w") as f:
 f.recording(1)
 f.tm = 2
 f.y = 0.3
 f.z = np.arange(3)+2

Example Read Files

This script reads the contents of both example_write*.py scripts
(which should both be run prior to running this script) and prints the file contents:

> python example_read.py

Opening file(s): foo*.pdb
x: 3
tm: [0, 1, 2]
y: [0.1, 0.2, 0.3]
z: [array([0, 1, 2]), array([1, 2, 3]), array([2, 3, 4])]
a: 10

Opening file(s): foo.h5
a: 10
tm: [0, 1, 2]
x: 3
y: [0.1, 0.2, 0.3]
z: [array([0, 1, 2]), array([1, 2, 3]), array([2, 3, 4])]

It is located at [QND repo]/qnd/examples/example_read.py.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	'''
example_read.py opens and lists the contents of files produced by
example_write_pdb.py and example_write_h5.py
'''
import numpy as np
from qnd.lazy import openb
from qnd.frontend import QList

fnames = ["foo*.pdb", "foo.h5"]

for fname in fnames:
 print("\nOpening file(s): {}".format(fname))

 with openb(fname, "r") as f:
 for k in list(f):
 val = f[k]
 if type(f[k]) is QList:
 val = val[:]
 print(f"{k}: {val}")

 Python Module Index

 q

 		 	

 		
 q	

 	[image: -]
 	
 qnd	

 	
 	
 qnd.adict	

 	
 	
 qnd.frontend	

 	
 	
 qnd.generic	

 	
 	
 qnd.h5f	

 	
 	
 qnd.lazy	

 	
 	
 qnd.ncf	

 	
 	
 qnd.pdbdump	

 	
 	
 qnd.pdbf	

 	
 	
 qnd.pdbparse	

 	
 	
 qnd.utils	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | Z

A

 	
 	add_primitive() (qnd.pdbparse.PDBChart method)

 	add_struct() (qnd.pdbparse.PDBChart method)

 	ADict (class in qnd.adict)

 	
 	append() (qnd.frontend.QList method)

 	attrs() (qnd.frontend.QGroup method)

 	auto() (qnd.frontend.QGroup method)

 	(qnd.frontend.QList method)

C

 	
 	callbacks() (qnd.generic.MultiFile method)

 	close() (qnd.frontend.QGroup method)

 	(qnd.generic.MultiFile method)

 	
 	current_file() (qnd.generic.MultiFile method)

D

 	
 	declared() (qnd.generic.MultiFile method)

 	drop() (qnd.frontend.QGroup method)

 	
 	dtype (qnd.frontend.QGroup attribute), [1]

 	(qnd.frontend.QLeaf attribute)

 	(qnd.frontend.QList attribute), [1]

E

 	
 	extend() (qnd.frontend.QList method)

F

 	
 	filename() (qnd.generic.MultiFile method)

 	find_or_create() (qnd.pdbparse.PDBChart method)

 	
 	flush() (qnd.frontend.QGroup method)

 	(qnd.generic.MultiFile method)

G

 	
 	get() (qnd.frontend.QGroup method)

 	
 	goto() (qnd.frontend.QGroup method)

 	gotoit() (qnd.frontend.QGroup method)

I

 	
 	isgroup (qnd.frontend.QGroup attribute)

 	(qnd.frontend.QLeaf attribute)

 	(qnd.frontend.QList attribute)

 	isleaf (qnd.frontend.QGroup attribute)

 	(qnd.frontend.QLeaf attribute)

 	(qnd.frontend.QList attribute)

 	
 	islist (qnd.frontend.QGroup attribute)

 	(qnd.frontend.QLeaf attribute)

 	(qnd.frontend.QList attribute)

 	items() (qnd.frontend.QGroup method)

 	ItemsAreAttrs (class in qnd.adict)

M

 	
 	MultiFile (class in qnd.generic)

N

 	
 	ndim (qnd.frontend.QGroup attribute)

 	(qnd.frontend.QLeaf attribute)

 	(qnd.frontend.QList attribute)

 	
 	next_address() (qnd.generic.MultiFile method)

O

 	
 	open() (qnd.generic.MultiFile method)

 	openb() (in module qnd.lazy)

 	opener() (in module qnd.generic)

 	
 	openh5() (in module qnd.h5f)

 	opennc() (in module qnd.ncf)

 	openpdb() (in module qnd.pdbf)

P

 	
 	parser() (in module qnd.pdbparse)

 	PDBChart (class in qnd.pdbparse)

 	
 	permfilter() (in module qnd.lazy)

 	push() (qnd.frontend.QGroup method)

Q

 	
 	QAttributes (class in qnd.frontend)

 	QGroup (class in qnd.frontend)

 	QLeaf (class in qnd.frontend)

 	QList (class in qnd.frontend)

 	qnd.adict (module)

 	qnd.frontend (module)

 	qnd.generic (module)

 	qnd.h5f (module)

 	
 	qnd.lazy (module)

 	qnd.ncf (module)

 	qnd.pdbdump (module)

 	qnd.pdbf (module)

 	qnd.pdbparse (module)

 	qnd.utils (module)

 	QnDList (class in qnd.frontend)

 	QState (class in qnd.frontend)

R

 	
 	read_special() (qnd.pdbparse.PDBChart method)

 	recording() (qnd.frontend.QGroup method)

 	redict() (in module qnd.adict)

 	
 	root() (qnd.frontend.QGroup method)

 	(qnd.frontend.QLeaf method)

 	(qnd.frontend.QList method)

S

 	
 	seek() (qnd.generic.MultiFile method)

 	shape (qnd.frontend.QGroup attribute)

 	(qnd.frontend.QLeaf attribute)

 	(qnd.frontend.QList attribute)

 	size (qnd.frontend.QGroup attribute)

 	(qnd.frontend.QLeaf attribute)

 	(qnd.frontend.QList attribute)

 	
 	split_address() (qnd.generic.MultiFile method)

 	sshape (qnd.frontend.QGroup attribute)

 	(qnd.frontend.QLeaf attribute)

 	(qnd.frontend.QList attribute)

T

 	
 	tell() (qnd.generic.MultiFile method)

U

 	
 	update() (qnd.adict.ItemsAreAttrs method)

 	
 	use() (qnd.pdbparse.PDBChart method)

Z

 	
 	zero_address() (qnd.generic.MultiFile method)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 QnD package

 		
 User Interface for Binary Files

 		
 Basic Usage

 		
 Recording History

 		
 Groups and lists of variables

 		
 Other attributes

 		
 qnd.adict module

 		
 qnd.frontend module

 		
 qnd.generic module

 		
 qnd.h5f module

 		
 qnd.lazy module

 		
 qnd.ncf module

 		
 qnd.pdbdump module

 		
 qnd.pdbf module

 		
 qnd.pdbparse module

 		
 qnd.utils module

 		
 Example Write HDF5 File

 		
 Example Write PDB Files

 		
 Example Read Files

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

